• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2014 / 2D TO STEREOSCOPIC 3D CONVERSION USING ROBUST SEMI-AUTOMATIC DEPTH MAP GENERATION IN UNCONSTRAINED IMAGES AND VIDEO SEQUENCES

2D TO STEREOSCOPIC 3D CONVERSION USING ROBUST SEMI-AUTOMATIC DEPTH MAP GENERATION IN UNCONSTRAINED IMAGES AND VIDEO SEQUENCES

April 24, 2015 by IeeeAdmin

Stereoscopic imaging has been around for many decades, it has recently seen a rise in interest due to the availability of consumer 3D displays and 3D films. This surge is seen in the recent proliferation of big budget 3D movies, or with some portions of the film being offered in 3D. 3D films show novel views of  the  scene  for  the  left  and  right  eyes  to  the  viewer. We  describe  a  system  for  robustly  estimating  synthetic  depth  maps  in  unconstrained  images  and videos, for semi-automatic conversion into stereoscopic 3D. Currently, this process is automatic or done manually by rotoscopers.  Automatic  is  the  least  labor  intensive,  but  makes  user  intervention  or  error correction  difficult.  Manual is the  most  accurate,  but  time  consuming  and  costly.  Noting  the  merits of  both,  a  semi-automatic  method  blends  them  together,  allowing  for  faster  and  accurate  conversion. This  requires  user-defined strokes on  the  image,  or  over several key frames for  video,  corresponding  to a  rough  estimate  of  the  depths.  After,  the  rest  of  the  depths  are  determined,  creating  depth  maps  to generate  stereoscopic  3D  content,  with  Depth  Image  Based  Rendering  to  generate  the  artificial  views. Depth map estimation can be considered as a multi-label segmentation problem: each class is a depth. For video, we allow the user to label only the first frame, and we propagate the strokes using computer vision techniques. We combine the  merits  of two well-respected  segmentation  algorithms:  Graph  Cuts and Random Walks. The diffusion from Random Walks, with the edge preserving of Graph Cuts should give good results. We generate good quality content, more suitable for perception, compared to a similar framework.

Filed Under: ieee projects 2014 Tagged With: Bulk IEEE Projects 2015, IEEE Projects 2015, IEEE Projects 2015 For Cse, ieee projects 2015 for it, IEEE Projects 2015 For ME Cse, IEEE Projects 2015 For MTech Cse, ieee projects 2015 for phd cse, ieee projects 2015 in image processing, java ieee projects 2015, matlab ieee projects 2015 Solapur

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in