• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2014 / BPN LEARNING MADE PRACTICAL WITH CLOUD COMPUTING FOR PRIVACY PRESERVING

BPN LEARNING MADE PRACTICAL WITH CLOUD COMPUTING FOR PRIVACY PRESERVING

December 6, 2014 by IeeeAdmin

To protect each participant’s private data set and intermediate results generated during the BPN network learning process, it requires secure computation of various operations, for example, addition, scalar product, and the nonlinear sigmoid function, which are needed by the BPN network algorithm; Back -Propagation is an effective method for learning neural networks and has been widely used in various applications. The accuracy of the learning result, despite other facts, is highly affected by the volume of high-quality data used for learning. To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN “doubly homomorphic” encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate.

Filed Under: ieee projects 2014 Tagged With: .net ieee projects 2015, Bulk IEEE Projects 2015, IEEE Projects 2015, IEEE Projects 2015 For BE Cse, IEEE Projects 2015 For Cse, ieee projects 2015 for it, IEEE Projects 2015 For MCA, IEEE Projects 2015 For ME Cse, ieee projects 2015 in cloud computing

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in