To protect each participant’s private data set and intermediate results generated during the BPN network learning process, it requires secure computation of various operations, for example, addition, scalar product, and the nonlinear sigmoid function, which are needed by the BPN network algorithm; Back -Propagation is an effective method for learning neural networks and has been widely used in various applications. The accuracy of the learning result, despite other facts, is highly affected by the volume of high-quality data used for learning. To improve the accuracy of learning result, in practice multiple parties may collaborate through conducting joint Back-Propagation neural network learning on the union of their respective data sets. During this process no party wants to disclose her/his private data to others. Existing schemes supporting this kind of collaborative learning are either limited in the way of data partition or just consider two parties. There lacks a solution that allows two or more parties, each with an arbitrarily partitioned data set, to collaboratively conduct the learning. This paper solves this open problem by utilizing the power of cloud computing. In our proposed scheme, each party encrypts his/her private data locally and uploads the ciphertexts into the cloud. The cloud then executes most of the operations pertaining to the learning algorithms over ciphertexts without knowing the original private data. By securely offloading the expensive operations to the cloud, we keep the computation and communication costs on each party minimal and independent to the number of participants. To support flexible operations over ciphertexts, we adopt and tailor the BGN “doubly homomorphic” encryption algorithm for the multiparty setting. Numerical analysis and experiments on commodity cloud show that our scheme is secure, efficient, and accurate.
You are here: Home / ieee projects 2014 / BPN LEARNING MADE PRACTICAL WITH CLOUD COMPUTING FOR PRIVACY PRESERVING