In this paper, we describe the design and implementation of a reverse dictionary. Unlike a traditional forward dictionary, which maps from words to their definitions, a reverse dictionary takes a user input phrase describing the desired concept, and returns a set of candidate words that satisfy the input phrase. This work has significant application not only for the general public, particularly those who work closely with words, but also in the general field of conceptual search. We present a set of algorithms and the results of a set of experiments showing the retrieval accuracy of our methods and the runtime response time performance of our implementation. Our experimental results show that our approach can provide significant improvements in performance scale without sacrificing the quality of the result. Our experiments comparing the quality of our approach to that of currently available reverse dictionaries show that of our approach can provide significantly higher quality over either of the other currently available implementations.
You are here: Home / 2013 ieee projects / Concept Similarity Mining without Frequency Information from Domain Describing Taxonomies