• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / mphil projects / Distributed file systems are key building blocks for cloud computing applications

Distributed file systems are key building blocks for cloud computing applications

April 4, 2014 by IeeeAdmin

Cloud Computing (or cloud for short) is a compelling technology. In clouds, clients can dynamically allocate their resources on-demand without sophisticated deployment and management of resources. Key enabling technologies for clouds include the Map Reduce programming paradigm, distributed file systems, virtualization and so forth. These techniques emphasize scalability, so clouds can be large in scale, and comprising entities can arbitrarily fail and join while maintaining system reliability. Distributed file systems are key building blocks for cloud computing applications based on the MapReduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. For example, consider a wordcount application that counts the number of distinct words and the frequency of each unique word in a large file. In such an application, a cloud partitions the file into a large number of disjointed and fixed-size pieces (or file chunks) and assigns them to different cloud storage nodes (i.e., chunkservers). Each storage node (or node for short) then calculates the frequency of each unique word by scanning and parsing its local file chunks. In such a distributed file system, the load of a node is typically proportional to the number of file chunks the node possesses. Because the files in a cloud can be arbitrarily created, deleted, and appended, and nodes can be upgraded, replaced and added in the file system, the file chunks are not distributed as uniformly as possible among the nodes. Load balance among storage nodes is a critical function in clouds. In a load-balanced cloud, the resources can be well utilized and provisioned, maximizing the performance of MapReduce-based applications.

Filed Under: mphil projects Tagged With: ieee projects 2015 in data mining, M phil projects, M.phil project center in chennai, M.phil projects in computer science, M.phil thesis in data mining, Mphil thesis

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in