• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2017 / Efficient Distance-Aware Influence Maximization in Geo-Social Networks

Efficient Distance-Aware Influence Maximization in Geo-Social Networks

October 10, 2017 by IeeeAdmin

Given a social network G and a positive integer k, the influence maximization problem aims to identify a set of k nodes in G that can maximize the influence spread under a certain propagation model. As the proliferation of geo-social networks, location-aware promotion is becoming more necessary in real applications. In this paper, we study the distance-aware influence maximization (DAIM) problem, which advocates the importance of the distance between users and the promoted location. Unlike the traditional influence maximization problem, DAIM treats users differently based on their distances from the promoted location. In this situation, the k nodes selected are different when the promoted location varies. In order to handle the large number of queries and meet the online requirement, we develop two novel index-based approaches, MIA-DA and RIS-DA, by utilizing the information over some pre-sampled query locations. MIA-DA is a heuristic method which adopts the maximum influence arborescence (MIA) model to approximate the influence calculation. In addition, different pruning strategies as well as a priority-based algorithm are proposed to significantly reduce the searching space. To improve the effectiveness, in RIS-DA, we extend the reverse influence sampling (RIS) model and come up with an unbiased estimator for the DAIM problem. Through carefully analyzing the sample size needed for indexing, RIS-DA is able to return a 1 – 1/e – E approximate solution with at least 1 – d probability for any given query. Finally, we demonstrate the efficiency and effectiveness of proposed methods over real geo-social networks.

Filed Under: ieee projects 2017

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in