• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2015 java / IEEE 2015 Java Information Forensics And Security Projects Title Abstract List Topics

IEEE 2015 Java Information Forensics And Security Projects Title Abstract List Topics

August 5, 2015 by IeeeAdmin

 

TECHNOLOGY: JAVA

DOMAIN: INFORMATION FORENSICS AND SECURITY

 S. No.  IEEE TITLE                      ABSTRACT IEEE YEAR
1. An Authenticated Trust and Reputation Calculation and Management System for Cloud and Sensor Networks Integration Induced by incorporating the powerful data storage and data processing abilities of cloud computing (CC) as well as ubiquitous data gathering capability of wireless sensor networks (WSNs), CC-WSN integration received a lot of attention from both academia and industry. However, authentication as well as trust and reputation calculation and management of cloud service providers (CSPs) and sensor network providers (SNPs) are two very critical and barely explored issues for this new paradigm. To fill the gap, this paper proposes a novel authenticated trust and reputation calculation and management (ATRCM) system for CC-WSN integration. Considering the authenticity of CSP and SNP, the attribute requirement of cloud service user (CSU) and CSP, the cost, trust, and reputation of the service of CSP and SNP, the proposed ATRCM system achieves the following three functions: 1) authenticating CSP and SNP to avoid malicious impersonation attacks; 2) calculating and managing trust and reputation regarding the service of CSP and SNP; and 3) helping CSU choose desirable CSP and assisting CSP in selecting appropriate SNP. Detailed analysis and design as well as further functionality evaluation results are presented to demonstrate the effectiveness of ATRCM, followed with system security analysis.        2015
2. Secure Binary Image Steganography Based on Minimizing the Distortion on the Texture Most state-of-the-art binary image steganographic techniques only consider the flipping distortion according to the human visual system, which will be not secure when they are attacked by steganalyzers. In this paper, a binary image steganographic scheme that aims to minimize the embedding distortion on the texture is presented. We extract the complement, rotation, and mirroring-invariant local texture patterns (crmiLTPs) from the binary image first. The weighted sum of crmiLTP changes when flipping one pixel is then employed to measure the flipping distortion corresponding to that pixel. By testing on both simple binary images and the constructed image data set, we show that the proposed measurement can well describe the distortions on both visual quality and statistics. Based on the proposed measurement, a practical steganographic scheme is developed. The steganographic scheme generates the cover vector by dividing the scrambled image into superpixels. Thereafter, the syndrome-trellis code is employed to minimize the designed embedding distortion. Experimental results have demonstrated that the proposed steganographic scheme can achieve statistical security without degrading the image quality or the embedding capacity.        2015
3. Control Cloud Data Access Privilege and Anonymity with Fully Anonymous Attribute-Based Encryption Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been proposed to secure the cloud storage. However, most work focuses on the data contents privacy and the access control, while less attention is paid to the privilege control and the identity privacy. In this paper, we present a semianonymous privilege control scheme AnonyControl to address not only the data privacy, but also the user identity privacy in existing access control schemes. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semianonymity. Besides, it also generalizes the file access control to the privilege control, by which privileges of all operations on the cloud data can be managed in a fine-grained manner. Subsequently, we present the AnonyControl-F, which fully prevents the identity leakage and achieve the full anonymity. Our security analysis shows that both AnonyControl and AnonyControl-F are secure under the decisional bilinear Diffie–Hellman assumption, and our performance evaluation exhibits the feasibility of our schemes.        2015

 

ieee 2015 java Secure Computing

ieee 2015 java Secure Computing

Filed Under: ieee projects 2015 java Tagged With: final year projects for cse in Information Forensics And Security, ieee papers 2015 Information Forensics And Security, ieee projects 2015 for cse in Information Forensics And Security, ieee projects 2015 with abstract Information Forensics And Security, ieee projects for Information Forensics And Security 2015, Information Forensics And Security ieee papers 2015, Information Forensics And Security ieee projects 2015

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in