S. No. | IEEE TITLE | ABSTRACT | IEEE YEAR |
1 | Analyzing the Effect of JPEG Compression on Local Variance of Image Intensity | The local variance of image intensity is a typical measure of image smoothness. It has been extensively used, for example, to measure the visual saliency or to adjust the filtering strength in image processing and analysis. However, to the best of our knowledge, no analytical work has been reported about the effect of JPEG compression on image local variance. In this paper, a theoretical analysis on the variation of local variance caused by JPEG compression is presented. First, the expectation of intensity variance of 8× 8 non-overlapping blocks in a JPEG image is derived. The expectation is determined by the Laplacian parameters of the discrete cosine transform coefficient distributions of the original image and the quantization step sizes used in the JPEG compression. Second, some interesting properties that describe the behavior of the local variance under different degrees of JPEG compression are discussed. Finally, both the simulation and the experiments are performed to verify our derivation and discussion. The theoretical analysis presented in this paper provides some new insights into the behavior of local variance under JPEG compression. Moreover, it has the potential to be used in some areas of image processing and analysis, such as image enhancement, image quality assessment, and image filtering. | 2016 |
2 | Data-Driven Soft Decoding of Compressed Images in Dual Transform-Pixel Domain | In the large body of research literature on image restoration, very few papers were concerned with compressioninduced degradations, although in practice, the most common cause of image degradation is compression. This paper presents a novel approach to restoring JPEG-compressed images. The main innovation is in the approach of exploiting residual redundancies of JPEG code streams and sparsity properties of latent images. The restoration is a sparse coding process carried out jointly in the DCT and pixel domains. The prowess of the proposed approach is directly restoring DCT coefficients of the latent image to prevent the spreading of quantization errors into the pixel domain, and at the same time, using online machine-learned local spatial features to regulate the solution of the underlying inverse problem. Experimental results are encouraging and show the promise of the new approach in significantly improving the quality of DCT-coded images. | 2016 |
3 | Lossless Compression of JPEG Coded Photo Collections | The explosion of digital photos has posed a significant challenge to photo storage and transmission for both personal devices and cloud platforms. In this paper, we propose a novel lossless compression method to further reduce the size of a set of JPEG coded correlated images without any loss of information. The proposed method jointly removes inter/intra image redundancy in the feature, spatial, and frequency domains. For each collection, we first organize the images into a pseudo video by minimizing the global prediction cost in the feature domain. We then present a hybrid disparity compensation method to better exploit both the global and local correlations among the images in the spatial domain. Furthermore, the redundancy between each compensated signal and the corresponding target image is adaptively reduced in the frequency domain. Experimental results demonstrate the effectiveness of the proposed lossless compression method. Compared with the JPEG coded image collections, our method achieves average bit savings of more than 31% | 2016 |
4 | Postprocessing of Compressed Images via Sequential Denoising | In this paper, we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plugand-Play Prior framework, suggesting the solution of general inverse problems via alternating direction method of multipliers, leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. In particular, we demonstrate impressive gains in image quality for several leading compression methods—JPEG, JPEG2000, and HEVC. | 2016 |
5 | Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search | Recent years have witnessed the success of binary hashing techniques in approximate nearest neighbor search. In practice, multiple hash tables are usually built using hashing to cover more desired results in the hit buckets of each table. However, rare work studies the unified approach to constructing multiple informative hash tables using any type of hashing algorithms. Meanwhile, for multiple table search, it also lacks of a generic query-adaptive and fine-grained ranking scheme that can alleviate the binary quantization loss suffered in the standard hashing techniques. To solve the above problems, in this paper, we first regard the table construction as a selection problem over a set of candidate hash functions. With the graph representation of the function set, we propose an efficient solution that sequentially applies normalized dominant set to finding the most informative and independent hash functions for each table. To further reduce the redundancy between tables, we explore the reciprocal hash tables in a boosting manner, where the hash function graph is updated with high weights emphasized on the misclassified neighbor pairs of previous hash tables. To refine the ranking of the retrieved buckets within a certain Hamming radius from the query, we propose a query-adaptive bitwise weighting scheme to enable fine-grained bucket ranking in each hash table, exploiting the discriminative power of its hash functions and their complement for nearest neighbor search. Moreover, we integrate such scheme into the multiple table search using a fast, yet reciprocal table lookup algorithm within the adaptive weighted Hamming radius. In this paper, both the construction method and the query-adaptive search method are general and compatible with different types of hashing algorithms using different feature spaces and/or parameter settings. Our extensive experiments on several large-scale benchmarks demonstrate that the proposed techniques can significantly outperform both the naive construction methods and the state-of-the-art hashing algorithms. | 2016 |
6 | Content-Based Image Retrieval Using Features Extracted From Halftoning-Based
Block Truncation Coding
|
This paper presents a technique for content-based image retrieval (CBIR) by exploiting the advantage of low complexity ordered-dither block truncation coding (ODBTC) for the generation of image content descriptor. In the encoding step, ODBTC compresses an image block into corresponding quantizers and bitmap image. Two image features are proposed to index an image, namely, color co-occurrence feature (CCF) and bit pattern features (BPF), which are generated directly from the ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two ODBTC quantizers and bitmap, respectively, by involving the visual codebook. Experimental results show that the proposed method is superior to the block truncation coding image retrieval systems and the other earlier methods, and thus prove that the ODBTC scheme is not only suited for image compression, because of its simplicity, but also offers a simple and effective descriptor to index images in CBIR system. | 2015 |
7 | Statistical Model of JPEG Noises and Its Application in Quantization Step Estimation | In this paper, we present a statistical analysis of JPEG noises, including the quantization noise and the rounding noise during a JPEG compression cycle. The JPEG noises in the first compression cycle have been well studied; however, so far less attention has been paid on the statistical model of JPEG noises in higher compression cycles. Our analysis reveals that the noise distributions in higher compression cycles are different from those in the first compression cycle, and they are dependent on the quantization parameters used between two successive cycles. To demonstrate the benefits from the analysis, we apply the statistical model in JPEG quantization
step estimation. We construct a sufficient statistic by exploiting the derived noise distributions, and justify that the statistic has several special properties to reveal the ground-truth quantization step. Experimental results demonstrate that the proposed estimator can uncover JPEG compression history with a satisfactory performance.
|
2015 |
8 | Steganography Using Reversible Texture Synthesis | We propose a novel approach for steganography using a reversible texture synthesis. A texture synthesis process resamples a smaller texture image, which synthesizes a new texture image with a similar local appearance and an arbitrary size. We weave the texture synthesis process into steganography to conceal secret messages. In contrast to using an existing cover image to hide messages, our algorithm conceals the source texture image and embeds secret messages through the process of texture synthesis. This allows us to extract the secret messages and source texture from a stego synthetic texture. Our approach offers three distinct advantages. First, our scheme offers the embedding capacity that is proportional to the size of the stego texture image. Second, a steganalytic algorithm is not likely to defeat our steganographic approach. Third, the reversible capability inherited from our scheme provides functionality, which allows recovery of the source texture. Experimental results have verified that our proposed algorithm can provide various numbers of embedding capacities, produce a visually plausible texture images, and recover the source texture. | 2015 |