TECHNOLOGY: Dot Net
DOMAIN: Image Processing
S. No. | IEEE TITLE | ABSTRACT | IEEE YEAR |
1 | Image Re-Ranking Based on Topic Diversity | Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach. | 2017 |
2 | Fast Bayesian JPEG Decompression and Denoising With Tight Frame Priors | JPEG decompression can be understood as an image reconstruction problem similar to denoising or deconvolution. Such problems can be solved within the Bayesian maximum a posteriori probability framework by iterative optimization algorithms. Prior knowledge about an image is usually described by the l1 norm of its sparse domain representation. For many problems, if the sparse domain forms a tight frame, optimization by the alternating direction method of multipliers can be very efficient. However, for JPEG, such solution is not straightforward, e.g., due to quantization and subsampling of chrominance channels. Derivation of such solution is the main contribution of this paper. In addition, we show that a minor modification of the proposed algorithm solves simultaneously the problem of image denoising. In the experimental section, we analyze the behavior of the proposed decompression algorithm in a small number of iterations with an interesting conclusion that this mode outperforms full convergence. Example images demonstrate the visual quality of decompression and quantitative experiment. | 2017 |
3 | Robust ImageGraph: Rank-Level Feature Fusion for Image Search | Recently, feature fusion has demonstrated its effectiveness in image search. However, bad features and inappropriate parameters usually bring about false positive images, i.e., outliers, leading to inferior performance. Therefore, a major challenge of fusion scheme is how to be robust to outliers. Towards this goal, this paper proposes a rank-level framework for robust feature fusion. First, we define Rank Distance to measure the relevance of images at rank level. Based on it, Bayes similarity is introduced to evaluate the retrieval quality of individual features, through which true matches tend to obtain higher weight than outliers. Then, we construct the directed ImageGraph to encode the relationship of images. Each image is connected to its K nearest neighbors with an edge, and the edge is weighted by Bayes similarity. Multiple rank lists resulted from different methods are merged via ImageGraph. Furthermore, on the fused ImageGraph, local ranking is performed to re-order the initial rank lists. It aims at local optimization, and thus is more robust to global outliers. Extensive experiments on four benchmark data sets validate the effectiveness of our method. Besides, the proposed method outperforms two popular fusion schemes, and the results are competitive to the state-of-the-art. | 2017 |
4 | Latent Semantic Minimal Hashing for Image Retrieval | Hashing-based similarity search is an important technique for large-scale query-by-example image retrieval system, since it provides fast search with computation and memory efficiency. However, it is a challenge work to design compact codes to represent original features with good performance. Recently, a lot of unsupervised hashing methods have been proposed to focus on preserving geometric structure similarity of the data in the original feature space, but they have not yet fully refined image features and explored the latent semantic feature embedding in the data simultaneously. To address the problem, in this paper, a novel joint binary codes learning method is proposed to combine image feature to latent semantic feature with minimum encoding loss, which is referred as latent semantic minimal hashing. The latent semantic feature is learned based on matrix decomposition to refine original feature, thereby it makes the learned feature more discriminative. Moreover, a minimum encoding loss is combined with latent semantic feature learning process simultaneously, so as to guarantee the obtained binary codes are discriminative as well. Extensive experiments on several well known large databases demonstrate that the proposed method outperforms most state-of-the-art hashing methods. | 2017 |
5 | Weakly Supervised Deep Matrix Factorization for Social Image Understanding | The number of images associated with weakly supervised user-provided tags has increased dramatically in recent years. User-provided tags are incomplete, subjective and noisy. In this paper, we focus on the problem of social image understanding, i.e., tag refinement, tag assignment, and image retrieval. Different from previous work, we propose a novel weakly supervised deep matrix factorization algorithm, which uncovers the latent image representations and tag representations embedded in the latent subspace by collaboratively exploring the weakly supervised tagging information, the visual structure, and the semantic structure. Due to the well-known semantic gap, the hidden representations of images are learned by a hierarchical model, which are progressively transformed from the visual feature space. It can naturally embed new images into the subspace using the learned deep architecture. The semantic and visual structures are jointly incorporated to learn a semantic subspace without overfitting the noisy, incomplete, or subjective tags. Besides, to remove the noisy or redundant visual features, a sparse model is imposed on the transformation matrix of the first layer in the deep architecture. Finally, a unified optimization problem with a well-defined objective function is developed to formulate the proposed problem and solved by a gradient descent procedure with curvilinear search. Extensive experiments on real world social image databases are conducted on the tasks of image understanding: image tag refinement, assignment, and retrieval. Encouraging results are achieved with comparison with the state of-the-art algorithms, which demonstrates the effectiveness of the proposed method. | 2017 |