• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2013-2014 / Multiple phase division is all normalized rating Values

Multiple phase division is all normalized rating Values

April 22, 2014 by IeeeAdmin

A novel dynamic personalized recommendation algorithm for sparse data, in which more rating data is utilized in one prediction by involving more neighboring ratings through each attribute in user and item profiles. A set of dynamic features are designed to describe the preference information based on TSA technique, and finally a recommendation is made by adaptively weighting the features using information in multiple phases of interest. The drifting of users’ preferences or items’ reputations is not too rapid, which makes it possible to describe temporal state of them by using some features. In this section, firstly we introduce a way to make use of profiles to extend the co-rating relation, and then we propose a set of dynamic features to reflect users’ preferences or items’ reputations in multiple phases of interest, and after that we propose an adaptive algorithm for dynamic personalized recommendation. The internet has become an indispensable part of our lives, and it provides a platform for enterprises to deliver information about products and services to the customers conveniently. As the amount of this kind of information is increasing rapidly, one great challenge is ensuring that proper content can be delivered quickly to the appropriate customers. Personalized recommendation is a desirable way to improve customer satisfaction and retention. There are mainly three approaches to recommendation engines based on different data analysis methods, i.e., rule-based, content-based and collaborative filtering. Among them, collaborative filtering (CF) requires only data about past user behavior like ratings, and its two main approaches are the neighborhood methods and latent factor models. The neighborhood methods can be user-oriented or item-oriented. They try to find like-minded users or similar items on the basis of co-ratings, and predict based on ratings of the nearest neighbors. Latent factor models try to learn latent factors from the pattern of ratings using techniques like matrix factorization and use the factors to compute the usefulness of items to users. CF has made great success and been proved to perform well in scenarios where user preferences are relatively static.

Filed Under: ieee projects 2013-2014 Tagged With: IEEE Proejcts 2015-16 For ME Cse, IEEE Proejcts 2015-16 For ME IT, IEEE Proejcts 2015-16 For MTech Cse, IEEE Proejcts 2015-16 For MTech IT, ieee projects 2015 in data mining

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in