• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / bulk ieee projects 2013 / Network Traffic Characterization Using Triangle area-based Multivariate Correlation Analysis

Network Traffic Characterization Using Triangle area-based Multivariate Correlation Analysis

November 24, 2013 by IeeeAdmin

DENIAL-OF-SERVICE (DoS) attacks are one type of aggressive and menacing intrusive behavior to online servers. DoS attacks severely degrade the availability of a victim a host, a router, or an entire network. They impose intensive computation tasks to the victim by exploiting its system vulnerability or flooding it with huge amount of useless packets. The victim can be forced out of service from a few minutes to even several days. This causes serious damages to the services running on the victim. Effective detection of DoS attacks is essential to the protection of online services. Work on DoS attack detection mainly focuses on the development of network-based detection mechanisms. Detection systems based on these mechanisms monitor traffic transmitting over the protected networks. These mechanisms release the protected online servers from monitoring attacks and ensure that the servers can dedicate themselves to provide quality services with minimum delay in response. With operating systems running on the host machines which they are protecting. The configurations of network based detection systems are less complicated than that of host-based detection systems. network-based detection systems can be classified into two main categories, namely misuse based detection systems anomaly-based detection systems. Misuse-based detection systems detect attacks by monitoring network activities and looking for matches with the existing attack signatures. In spite of having high detection rates to known attacks and low false positive rates, misuse-based detection systems are easily evaded by any new attacks and even variants of the existing attacks. Owing to the principle of detection, which monitors and flags any network activities presenting significant deviation from legitimate traffic profiles as suspicious objects, anomaly-based detection techniques show more promising in detecting zero-day intrusions that exploit previous unknown system vulnerabilities.

Filed Under: bulk ieee projects 2013 Tagged With: 2015 ieee projects, bulk ieee projects 2015, ieee 2015 projects, ieee projects 2015

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in