• HOME
  • IEEE Projects
    • IEEE Projects 2017 Dot Net Projects
    • IEEE Projects 2017 Java Projects
    • IEEE Projects 2016 Dot Net Projects
    • IEEE Projects 2016 Java Projects
    • IEEE Projects 2015
    • IEEE Projects 2014
      • IEEE 2014 Java Projects
        • IEEE Projects 2014 For Cse in Data Mining Java
        • IEEE Projects 2014 For Cse in cloud computing Java
        • IEEE Projects 2014 For Cse in Image Processing Java
        • IEEE Projects 2014 For Cse in Mobile Computing Java
        • IEEE Projects 2014 For Cse in Networking Java
        • IEEE Projects 2014 For Cse in Network Security Java
        • IEEE Projects 2014 For Cse in Software Engineering Java
      • IEEE 2014 Dotnet Projects
        • IEEE Projects 2014 For Cse in Data Mining Dotnet
        • IEEE Projects 2014 For Cse in Cloud Computing Dotnet
        • IEEE Projects 2014 For Cse in Netwoking Dotnet
        • IEEE Projects 2014 For Cse in Netwok Security Dotnet
    • IEEE Projects 2013
      • IEEE 2013 JAVA Projects
      • IEEE 2013 Dotnet Projects
    • IEEE Projects 2012
      • IEEE 2012 JAVA Projects
      • IEEE 2012 Dotnet Projects
    • IEEE Projects 2011
      • IEEE 2011 JAVA Projects
      • IEEE 2011 Dotnet Projects
    • IEEE Projects 2010
  • Power Electronics Projects
    • IEEE Projects 2015 For Power Electronics
    • IEEE Projects 2014 For Power Electronics
    • IEEE 2013 Power Electronics Projects
  • EMBEDDED Projects
    • IEEE Projects 2015 For Embedded Systems
    • IEEE 2013 Embedded Projects
  • Matlab Projects
    • IEEE 2013 Image Processing Projects
    • IEEE 2013 Power Electronics Projects
    • IEEE 2013 Communication Projects
  • NS2 Projects

Phd Projects | IEEE Project | IEEE Projects 2020-19 in Trichy & Chennai

IEEE Projects Trichy, Best IEEE Project Centre Chennai, Final Year Projects in Trichy - We Provide IEEE projects 2018 - 2019 , IEEE 2018 Java Projects for M.E/M.Tech, IEEE 2018 Dot net Projects for B.E/B.Tech, IEEE 2018 Power electronics Projects Engineering & Diploma Students, Matlab, Embedded, NS2 Projects
  • HOME
  • IEEE 2017 DOT NET PROJECT TITLES
  • IEEE 2017 JAVA PROJECT TITLES
  • CONTACT US
You are here: Home / ieee projects 2014 / THE SPATIAL INVERTED INDEX

THE SPATIAL INVERTED INDEX

June 15, 2014 by IeeeAdmin

A spatial database manages multidimensional objects (such as points, rectangles, etc.), and provides fast access to those objects based on different selection criteria. The importance of spatial databases is reflected by the convenience of modeling entities of reality in a geometric manner. For example, locations of restaurants, hotels, hospitals and so on are often represented as points in a map, while larger extents such as parks, lakes, and landscapes often as a combination of rectangles. Many functionalities of a spatial database are useful in various ways in specific contexts. For instance, in a geography information system, range search can be deployed to find all restaurants in a certain area, while nearest neighbor retrieval can discover the restaurant closest to a given address. Today, the widespread use of search engines has made it realistic to write spatial queries in a brand new way. Conventionally, queries focus on objects’ geometric properties only, such as whether a point is in a rectangle, or how close two points are from each other. Some modern applications that call for the ability to select objects based on both of their geometric coordinates and their associated texts. It would be fairly useful if a search engine can be used to find the nearest restaurant that offers “steak, spaghetti, and brandy” all at the same time. There are easy ways to support queries that combine spatial and text features. For example, forth above query, we could first fetch all the restaurants whose menus contain the set of keywords {steak, spaghetti, brandy}, and then from the retrieved restaurants, find the nearest one. Similarly, one could also do it reversely by targeting first the spatial conditions – browse all the restaurants in ascending order of their distances to the query point until encountering one whose menu has all the keywords. The major drawback of these straightforward approaches is that they will fail to provide real time answers on difficult inputs. A typical example is that the real nearest neighbor lies quite faraway from the query point, while all the closer neighbors are missing at least one of the query keywords. Spatial queries with keywords have not been extensively explored. In the past years, the community has sparked enthusiasm in studying keyword search in relational databases.

Filed Under: ieee projects 2014 Tagged With: Bulk IEEE Projects 2015, IEEE Projects 2015, IEEE Projects 2015 For BE Cse, IEEE Projects 2015 For Cse, ieee projects 2015 for it, IEEE Projects 2015 For MCA, IEEE Projects 2015 For ME Cse, ieee projects 2015 in data mining, java ieee projects 2015

Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in