We study a data mining problem concerning the elastic peak detection in 2D liquid chromatography-mass spectrometry (LC-MS) data. These data can be modeled as time series, in which the X-axis represents time points and the Y-axis represents intensity values. A peak occurs in a set of 2D LC-MS data when the sum of the intensity […]
Efficiently Indexing Large Sparse Graphs for Similarity Search
The graph structure is a very important means to model schemaless data with complicated structures, such as protein-protein interaction networks, chemical compounds, knowledge query inferring systems, and road networks. This paper focuses on the index structure for similarity search on a set of large sparse graphs and proposes an efficient indexing mechanism by introducing the […]
Extending Attribute Information for Small Data Set Classification
Data quantity is the main issue in the small data set problem, because usually insufficient data will not lead to a robust classification performance. How to extract more effective information from a small data set is thus of considerable interest. This paper proposes a new attribute construction approach which converts the original data attributes into […]
Feature Selection Based on Class-Dependent Densities for High-Dimensional Binary Data
Data and knowledge management systems employ feature selection algorithms for removing irrelevant, redundant, and noisy information from the data. There are two well-known approaches to feature selection, feature ranking (FR) and feature subset selection (FSS). In this paper, we propose a new FR algorithm, termed as class-dependent density-based feature elimination (CDFE), for binary data sets. […]
Effective and Efficient Shape-Based Pattern Detection over Streaming Time Series
Existing distance measures of time series such as the euclidean distance, DTW, and EDR are inadequate in handling certain degrees of amplitude shifting and scaling variances of data items. We propose a novel distance measure of time series, Spatial Assembling Distance (SpADe), that is able to handle noisy, shifting, and scaling in both temporal and […]
Discover Dependencies from Data—A Review
Functional and inclusion dependency discovery is important to knowledge discovery, database semantics analysis, database design, and data quality assessment. Motivated by the importance of dependency discovery, this paper reviews the methods for functional dependency, conditional functional dependency, approximate functional dependency, and inclusion dependency discovery in relational databases and a method for discovering XML functional dependencies.
DDD: A New Ensemble Approach for Dealing with Concept Drift
Online learning algorithms often have to operate in the presence of concept drifts. A recent study revealed that different diversity levels in an ensemble of learning machines are required in order to maintain high generalization on both old and new concepts. Inspired by this study and based on a further study of diversity with different […]
Answering General Time-Sensitive Queries
Time is an important dimension of relevance for a large number of searches, such as over blogs and news archives. So far, research on searching over such collections has largely focused on locating topically similar documents for a query. Unfortunately, topic similarity alone is not always sufficient for document ranking. In this paper, we observe […]
Anónimos: An LP-Based Approach for Anonymizing Weighted Social Network Graphs
The increasing popularity of social networks has initiated a fertile research area in information extraction and data mining. Anonymization of these social graphs is important to facilitate publishing these data sets for analysis by external entities. Prior work has concentrated mostly on node identity anonymization and structural anonymization. But with the growing interest in analyzing […]
Agglomerative Mean-Shift Clustering
Mean-Shift (MS) is a powerful nonparametric clustering method. Although good accuracy can be achieved, its computational cost is particularly expensive even on moderate data sets. In this paper, for the purpose of algorithmic speedup, we develop an agglomerative MS clustering method along with its performance analysis. Our method, namely Agglo-MS, is built upon an iterative […]
- « Previous Page
- 1
- …
- 81
- 82
- 83
- 84
- 85
- …
- 108
- Next Page »